C	Questi	on	Answer	Mark	Guidance
1	(a)	(i)	H O CH ₂ OH H ₂ N-C-C-N-C-COOH CH ₃ H H H O CH ₃ H ₂ N-C-C-N-C-COOH HOH ₂ C H H	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW peptide chains
	(a)	(ii)	alanine at pH 6.0 $\begin{array}{c} H & O \\ \oplus & I & II \\ H_3N-C-C-O \\ \hline CH_3 \\ \end{array}$ $\begin{array}{c} H & O \\ CH_3 \\ \end{array}$ $\begin{array}{c} H & O \\ I & II \\ \hline CH_2N-C-C-O \\ \hline CH_2OH \\ \end{array}$ serine at pH 10.0	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + charge on N or H: <i>i.e.</i> ⁺ NH ₃ or NH ₃ ⁺ DO NOT ALLOW '–' charge on C <i>i.e.</i> [–] COO DO NOT ALLOW if structure is incomplete

Que	stion	Answer	Mark	Guidance
(8	ı) (iii)		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
		N C		IGNORE bond angles
		Ö		DO NOT ALLOW more than one repeat unit
		OR		ALLOW end bonds shown as
				DO NOT ALLOW if structure has no end bonds
		N		IGNORE brackets unless they are used to pick out the repeat unit from a polymer chain
				IGNORE n

Questi	on		Answer		Mark	Guidance
(b)		¹ H NMR spectrum for serine		2	ALLOW δ values \pm 0.2 ppm, as a range or a value within the range	
		chemical shift, δ/ppm	relative peak area	splitting pattern		ALLOW a response that implies a splitting into three for a
		2.0 to 3.0	1	triplet		triplet/into two for a doublet
		3.3 to 4.2	2	doublet		
		One mark for each o	correct row	√ √		
(c)	(i)	**************************************	H \) * ЭОН	1	ALL correct for one mark
(c)	(ii)	any two from:		it. de ffe ative e	2	IGNORE toxic/harmful
		increases the (pharm Reduces/stops the n stereoisomers/optical	need for/cost/diffic			IGNORE a response that implies a reduced dose IGNORE "it takes (less) time to separate"

Ques	tion	Answer	Mark	Guidance
(c)	(iii)	✓OH ✓ one mark for ethanol	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
				ALLOW + charge on H of NH ₂ groups, <i>i.e.</i> NH ₂ ⁺
		H_2N		IGNORE negative (counter) ions
		COOH ✓ one mark for proline with NH OR NH ₂ ⁺		
		HO O OH		
		H_2 H_2 O		
		✓ one mark for remaining fragment N N H Or H 2		
		 ✓ Fourth mark for structure of both ions shown correctly with NH₂⁺ 		
(c)	(iv)	idea of separating (the components/compounds)	1	ALLOW (identifies compounds) using fragmentation
		AND idea of (identifying compounds by) comparison with a		(patterns)/fragment ions (but IGNORE molecular ions)
		(spectral) database ✓		IGNORE retention times
		Total	15	

0 (;	T .		
Question	Answer	Mark	
2 (a)	AlCl ₃ + Cl ₂ \longrightarrow AlCl ₄ ⁻ + Cl ⁺ \checkmark curly arrow correct intermediate \checkmark correct products to Cl ⁺ \checkmark curly arrow from C-H bond back to reform π -ring H ⁺ + AlCl ₄ ⁻ \longrightarrow AlCl ₃ + HCl \checkmark Note: 1st curly arrow should start within the ring or on the ring Note: ALLOW mechanism using Kekulé structures:	6	DO NOT ALLOW the following intermediate: π-ring must be more than 1/2 way up AND horseshoe' the right way up, ie gap towards C with Cl ALLOW + sign anywhere inside the 'hexagon' of intermediate ALLOW mechanism with Cl–ClAlCl ₃ for 1st 2 marks, ie Cl — Cl — AlCl ₃ Second curly arrow to either –Cl or AlCl ₃ Note: If Br ⁺ is used, DO NOT ALLOW 1st mechanism mark but all other marks available by ECF

Questi	on	er	Mark	Guidance
(b)	(i)	2 + CI ₃ CCHO		Each mark is independent of the other ALLOW C ₆ H ₅ Cl for chlorobenzene
		+ H ₂ O		ALLOW any unambiguous structure for Cl ₃ CCHO, e.g. CCl ₃ CHO BUT DO NOT ALLOW CCl ₃ COH
		1st mark : reactants, correctly balanced, ✓ ie 2 C ₆ H ₅ Cl + Cl ₃ CCHO		Standalone mark
		2nd mark : product, (correctly balanced) ✓ ie H ₂ O	2	Standalone mark
	(ii)	6 🗸	1	
(c)		substitution/nitration/NO ₂ at different positions (on the ring) OR forms different isomers		ALLOW examples, e.g. 1-chloro-2-nitrobenzene and 1-chloro-2-nitrobenzene ALLOW 'it' for nitro group
		OR multiple substitution/nitration ✓	1	ALLOW examples, e.g. 1-chloro-2,3-dinitrobenzene IGNORE nitrate/NO ₃
(d)		In phenol, (lone) pair of electrons on O is (partially) delocalised into the ring ✓ QWC : delocalised/delocalized/delocalise, etc must be spelt correctly in the correct context for benzene OR phenol at least once		ANNOTATIONS MUST BE USED ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled into delocalised ring IGNORE 'activates the ring'
		electron density increases/is high ✓ ORA		DO NOT ALLOW charge density or electronegativity
		Cl₂/electrophile is (more) polarised ✓ ORA	3	ALLOW Cl ₂ is (more) attracted OR Cl ₂ is not polarised by benzene OR induces dipoles (in chlorine/electrophile)
		Total	13	

Qu	esti	on	Expected	d Answers	Marks	Additional Guidance
3	a		Tollens' test AND 'silver precipitate/mirror' ✓ is the aldehyde ✓ react with 2,4-DNP(H) and 'orange precipitate' ✓ must be the ketone ✓ 2,4-DNP(H) AND orange precipitate ✓ is either aldehyde OR ketone ALLOW carbonyl OR C=O✓ Tollens' test & 'silver ppt/mirror' ✓ is the aldehyde ✓	approaches Tollens' test AND 'silver precipitate/mirror' ✓ is the aldehyde ✓ react with carbonate/ hydrogencarbonate/ Na/Mg and 'fizzes/ bubbles/ effervesces/ gas evolved ✓ must be the (carboxylic) acid ✓ 2,4-DNP(H) and no orange precipitate ✓ is the (carboxylic) acid ✓ Tollens' test & 'silver ppt/mirror' ✓ is the aldehyde ✓	4	ALLOW ammoniacal AgNO ₃ / Ag ⁺ (NH ₃) ₂ / Ag ⁺ (NH ₃) ALLOW acidified dichromate OR Fehlings as an alternative to Tollens – observation 'turn green' OR 'red precipitate' respectively ALLOW acidified manganagate(VII) and observation as either brown precipitate/decolourised/pale pink ALLOW Brady's (reagent) ALLOW orange/red/yellow for colour of the 2,4-DNP(H) precipitate ALLOW solid/crystals in place of precipitate IGNORE any reference to melting points ALLOW PCl ₅ as a test for the acid – observation would be 'white fumes (of HCl)' ALLOW detection of (carboxylic) acid by reacting with an alcohol to make an ester but no mark for the observation. DO NOT ALLOW detection of (carboxylic) acid by pH or indicator Please annotate, use ticks to show where marks are awarded
	b		Peak in range 2500–3300 (shows O–H ✓ [need wavenumber (or range		1	DO NOT ALLOW single peak quoted within range 2500–3300 other than 3000 (cm ⁻¹) for OH DO NOT ALLOWrange 3200–3550 (cm ⁻¹) IGNORE any reference to C-O or C=O

Question	Expected Answers		Additional Guidance
С	Alternative approaches depending on whether or not the aldehyde is correct		ALLOW 3-methylbutanal, any correct unambiguous structure ALLOW two marks for correct aldehyde with no explanation
	Doublet indicates adjacent C is bonded to only 1H OR (relative) peak area indicates 2 x CH₃ (in the same environment) ✓ If aldehyde is correct (CH₃)₂CH——CH₂—CHO ✓ ✓ If aldehyde is correct only need to explain doublet OR peak areas Doublet indicates C is bonded to or AND (relative) peak arindicates 2 x CH₃ same environme If aldehyde ident incorrect ★ if aldehyde is incorrect ★ or peak areas	rea ₃ (in the nt) ✓ ified is	ALLOW doublet/peak at 0.9ppm due to R–CH ALLOW the splitting shows adjacent to CH/environment that contains 1 H/proton ALLOW 6 Hs/ protons in same environment DO NOT ALLOW 6 Hs in same environment next to CHO e.g. H ₃ C — C — Would score two marks if the doublet and the peak areas were correctly explained
d i	H_3C — CH_2 — CH_2 — CH_3 \checkmark ketone 3	1	ALLOW displayed/skeletal formulae
ii	There are 4 (different C) environments ✓		ALLOW 2 Cs are in same environment/equivalent
	(therefore) it is ketone 2 / O	3	ALLOW 3-methylbutan(-2-)one/ any correct unambiguous structure ALLOW 2-methylbutan-3-one
	(C responsible for peak at δ = 210 ppm) is C=O/carbonyl carbon \checkmark		ALLOW C C
		Total 12	

Question	er	Mark	Guidance	
4 (a)	(CH ₃ CO) ₂ O + CH ₃ CH(OH)CH ₃ → CH ₃ COOCH(CH ₃) ₂ + CH ₃ COOH 1st mark Correct structure of ester: CH ₃ COOCH(CH ₃) ₂ ✓ 2nd mark Equation contains correct formulae for (CH ₃ CO) ₂ O, CH ₃ CH(OH)CH ₃ AND CH ₃ COOH ✓	2	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW (CH ₃) ₂ CHOOCCH ₃ OR (CH ₃) ₂ CHOCOCH ₃	
(b)	(i) (relative) solubility ✓	1	IGNORE partition	
	The esters would have similar retention times AND similar structures/molecules OR same functional groups OR similar polarities OR similar solubilities ✓ Alcohol would have short retention time AND alkane would have long retention time ✓	2	IGNORE similar properties	

Question	Answer	Mark	Guidance
4 (c)	Elemental analysis and molecular formula – 2 marks Use of percentages (to find EF) AND 144 ✓ Molecular formula = C ₈ H ₁₆ O ₂ ✓	2 marks	ANNOTATIONS MUST BE USED Working C: H: O = 66.63/12: 11.18/1: 22.19/16 5.5525: 11.18: 1.386875 4: 8: 1 Alternative method: carbon: (144 x 66.63/100)/12 = 8 hydrogen: (144 x 11.18/100)/1 = 16 oxygen: (144 x 22.19/100)/16 = 2
	ester structure – 4 marks CH ₃ O H ₃ C CH ₂ CH ₂ CH ₃ CH ₃ V V V	4 marks	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous NO ECF from earlier structures If not fully correct award following marks: If structure an ester of formula C ₈ H ₁₆ O ₂ OR the organic structure contains C(CH ₃) ₃ ✓ If structure is an ester of formula C ₈ H ₁₆ O ₂ AND ester contains C(CH ₃) ₃ ✓ If structure is an ester of formula C ₈ H ₁₆ O ₂ AND ester contains O−CH ₂ C(CH ₃) ₃ AND ester contains CH ₃ CH ₂ COO ✓ ✓ ✓ i.e. If the ester link is reversed CH ₃ CH ₃ CH ₃ CH ₃ IGNORE any name

Question	Answer	Mark	Guidance
	NMR analysis – 4 marks		 NOTE: Each peak can be identified from: its δ value: ± 0.2 ppm a range, eg 'the peak between 2 and 3' its relative peak area (CARE two peaks have an area of 2) its splitting (CARE: two peaks are singlets) labelling on the spectrum
	Triplet (at δ 1.3) shows an adjacent CH₂ OR triplet (at δ 1.3) shows (C with) 2 adjacent Hs/protons ✓ (because of splitting: so triplet)		QWC: triplet must be spelled correctly ALLOW neighbouring Hs for adjacent to Hs
	Peak at (δ) 2.2 shows H adjacent to C=O AND adjacent to (C with) no hydrogens ✓ (because of no splitting: so singlet)		For peak at (δ) 2.2 ALLOW singlet at (δ) 2.2 ALLOW singlet labelled 2
	Peak at (δ) 4.2 shows H–C–O AND adjacent CH ₃ OR 3 adjacent Hs/protons ✓ (because of splitting: so quartet)		For peak at (δ) 4.2 ALLOW quartet (labelled 2)
	Peak at (δ) 0.9 show 3 x CH ₃ \checkmark (because of singlet and area 9)	4 marks	Check back for any responses added to spectra ADD ^ MARK TO THE SPECTRUM PAGE TO SHOW THAT IT HAS BEEN LOOKED AT
	Total for 4(c)	10	
	Total	15	